- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Furey, George_N (2)
-
Tilman, David (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Two of the major factors that control the composition of herbaceous plant communities are competition for limiting soil resources and herbivory. We present results from a 14-year full factorial experiment in a tallgrass prairie ecosystem that crossed nitrogen (N) addition with fencing to exclude white-tailed deer,Odocoileus virginianus, from half the plots. Deer presence was associated with only modest decreases in aboveground plant biomass (14% decrease; −45 ± 19 g m−2) with no interaction with N addition. N addition at 5.44 and 9.52 g N m−2 year−1led to increases in biomass. There were weak increases in species richness associated with deer presence, but only for no or low added N (1 and 2 g N m−2 year−1). However, the presence of deer greatly impacted the abundances of some of the dominant perennial forb species, but not the dominant grasses. Deer presence increased the abundance of the forbArtemisia ludovicianaby 34 ± 12 SE g m−2(94%) and decreased the forbSolidago rigidaby 32 ± 13 SE g m−2(79%). We suggest that these changes may have resulted from trade-offs in plant competitive ability for soil N versus resistance to deer herbivory. Field observations suggest deer acted as florivores, mainly consuming the flowers of susceptible forb species. The preferential consumption of flowers of forbs that seem to be superior N competitors appears to create an axis of interspecific niche differentiation. The overpopulation of white-tailed deer in many tallgrass reserves likely structures the abundance of forb species.more » « less
-
Furey, George_N; Tilman, David (, Proceedings of the National Academy of Sciences)Significance Both plant biodiversity and soil fertility are in decline. We find that restoration of plant biodiversity on a nutrient-poor, unfertilized soil led to greater increases in soil fertility than occurred when these same plant species grew in monocultures. The plant species in this biodiversity experiment fell along a trade-off surface in their nutrient content traits, precluding any one species, or any one type of species, from markedly increasing soil fertility. Our results have implications for degraded agroecosystems, suggesting that increasing plant functional biodiversity may help restore their soil fertility. Creative applications of our findings to pastures, cover crops, and intercropping systems may provide greenhouse gas benefits from soil carbon storage and reduce the amounts of fertilizers needed for optimal yields.more » « less
An official website of the United States government
